Variable selection with ABC Bayesian forests

نویسندگان

چکیده

Few problems in statistics are as perplexing variable selection the presence of very many redundant covariates. The problem is most familiar parametric environments such linear model or additive variants thereof. In this work, we abandon framework, which can be quite detrimental when covariates impact outcome a non-linear way, and turn to tree-based methods for selection. Such screening traditionally done by pruning down large trees ranking variables based on some importance measure. Despite heavily used practice, these ad-hoc rules not yet well understood from theoretical point view. devise Bayesian probabilistic method show that it consistent regression surface smooth mix $p>n$ These results first consistency forest priors. Probabilistic assessment made feasible spike-and-slab wrapper around sum-of-trees Sampling posterior distributions over inherently difficult. As an alternative MCMC, propose ABC Forests, new sampling data-splitting achieves higher acceptance rate. We robust successful at finding with high marginal inclusion probabilities. Our algorithm provides avenue towards approximating median probability non-parametric setups where likelihood intractable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable selection using random forests

This paper proposes, focusing on random forests, the increasingly used statistical method for classification and regression problems introduced by Leo Breiman in 2001, to investigate two classical issues of variable selection. The first one is to find important variables for interpretation and the second one is more restrictive and try to design a good prediction model. The main contribution is...

متن کامل

Variable Selection Using Random Forests

One of the main topic in the development of predictive models is the identification of variables which are predictors of a given outcome. Automated model selection methods, such as backward or forward stepwise regression, are classical solutions to this problem, but are generally based on strong assumptions about the functional form of the model or the distribution of residuals. In this paper a...

متن کامل

Bayesian recursive variable selection

In this work we introduce a new model space prior for Bayesian variable selection in linear regression. This prior is designed based on a recursive constructive procedure that randomly generates models by including variables in a stagewise fashion. We provide a recipe for carrying out Bayesian variable selection and model averaging using this prior, and show that it possesses several desirable ...

متن کامل

Bayesian Shrinkage Variable Selection

We introduce a new Bayesian approach to the variable selection problem which we term Bayesian Shrinkage Variable Selection (BSVS ). This approach is inspired by the Relevance Vector Machine (RVM ), which uses a Bayesian hierarchical linear setup to do variable selection and model estimation. RVM is typically applied in the context of kernel regression although it is also suitable in the standar...

متن کامل

Bayesian Grouped Variable Selection

Traditionally, variable selection in the context of linear regression has been approached using optimization based approaches like the classical Lasso. Such methods provide a sparse point estimate with respect to regression coefficients but are unable to provide more information regarding the distribution of regression coefficients like expectation, variance estimates etc. In the recent years, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Royal Statistical Society Series B-statistical Methodology

سال: 2021

ISSN: ['1467-9868', '1369-7412']

DOI: https://doi.org/10.1111/rssb.12423